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[ABSTRACT]: Cohomology is a family of topological invariants originated

from the context of algebra that can detect the global structure of given topo-

logical space, which is used almost everywhere in modern mathematics. Čech

cohomology, de Rham cohomology and singular cohomology are three classi-

cal cohomology theories, and under appropriate conditions, they can be unified

into the framework of sheaf cohomology using the machinery of derived func-

tor. Moreover, this way of defining a cohomology theory inspires a method to

developing cohomolgy theories for more general class of objects. In this paper,

these three classical cohomology theories are introduced, and are proven to co-

incide on a smooth manifold using the classical approach. Then we introduce

Grothendieck’s theory of derived-functor-based sheaf cohomolgy, which serves

as a bridge to make the isomorphism between three theories become natural. An

example of complex manifold is given in the end of this paper, demonstrating

the phenomenon of non-trivial global topological structure making sheaf coho-

mology non-trivial, and therefore influencing the structural sheaf. This illus-

trates the ability of sheaf cohomology to relate the topological and geometrical

properties of certain space.

[Key words]: Cohomology theoreies, Sheaf, Smooth manifold
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1. Introduction
Cohomology theories are a family of topological invariants originated from the con-

text of algebra that is used to detect global structures of topological spaces (or, for a more

restricted class of topological spaces), They are widely used in almost all fields of mathemat-

ics. Čech cohomology, de Rham cohomology, and singular cohomology are three classical

cohomology theories. Under appropriate conditions, they can be unified under the frame-

work of sheaf cohomology using the machinery of derived functors. Moreover, this way

of defining a cohomology theory has inspired a method to develop cohomolgy theories for

more general classes of objects.

This paper is divided into three sections. In section 1, we introduce singular cohomol-

ogy and de Rham cohomology and prove their isomorphism on a smooth manifold, that is,

the de Rham theorem. In section 2, we introduce Čech cohomology, which bears the name

“sheaf cohomology” in many traditions, but we leave this terminology for derived-functor-

based cohomology introduced later. In this section, we prove that Čech cohomology is also

isomorphic to de Rham cohomology in the case of smooth manifolds. In section 3, we define

sheaf cohomology using derived functor, and then prove that sheaf cohomolgy of constant

sheaf on a topological space with appropriate assumptions is isomorphic to de Rham co-

homology and singular cohomology. At the end of this section, we give the example of

exponential exact sequence to demonstrate how topological and geometrical properties of a

space can influence each other, using the tool of sheaf cohomology.

2. De Rham cohomology and de Rham’s theorem
De Rham cohomology is a natural cohomology theory arising basically from calculus.

Our starting point is to introduce de Rham cohomology and prove its equivalence to ordinary

singular cohomology.

2.1 Singular and de Rham cohomology theories

The term cohomology is an umbrella term for a family of functors that assigns an alge-

braic structure to a “space”, usually a topological space, but sometimes also more restricted
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classes of spaces like the case of de Rham cohomology upcoming later. One common in-

gredient of cohomology is a functor from the homotopic category of chain complexes to the

category of modules, which we call it cohomology of chain complex:

Definition 1. Let C• be a family ofR-modules indexed by Z together with homomorphisms

dk : Ck → Ck+1 for each k, such that d2 = 0. The data of the pair (C•, d•) is called a

chain complex of R-modules, or simply, a chain complex. They form a category together

with family of morphisms f • : A• → B• that makes the following diagram commute

Ak Ak+1

Bk Bk+1

d

fk fk+1

d

We denote this category by Ch(ModR).

Definition 2. We define a series of functor H∗(−) : Ch(ModR) → ModR as follows: for

each k, define Hk(A•) := ker(dk)/im(dk−1); while for morphism f : A• → B•, it will

naturally induce a map f ∗ : H∗(A•)→ H∗(B•). We call H∗(−) the algebraic cohomology

functor.

In some since, this notion of algebraic cohomology functor can be seen as “a homotopy

theory of chain complexes”. With this notion in mind, we can quickly cook up all kinds

of cohomology functors that works with specific classes of spaces by generating different

chain complexes from the topological or geometrical data, and feed them into the algebraic

cohomology functor.

The first one to introduce is singular cohomology:

Definition 3. LetX be a topological space. Define standard simplex∆n to be the subspace

{
∑
λiei ∈ Rn+1|

∑
λi = 1} of Euclidean space Rn+1 where {ei} is the standard basis. We

use∆n
i to denote the n-th face of the standard n-simplex, which can be defined by removing

ei from the linear combination in the definition of ∆n. Define Ck(X,R) to be the free R-

module generated by all continuousmaps∆k → X and define ∂k : Ck(X,R)→ Ck−1(X,R)
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by

∂(σ) :=
∑

i

(−1)iσ|∆n
i
.

Nowwe can construct a chain complexC•(X,R) by lettingCk(X,R) := HomR(Ck(X,Z), R)

and d := ∂∗, where (−)∗ means set-theoretical pullback of functions. We can check that

d2 = 0, so C•(X,R) is indeed a chain complex, and we call it singular chain complex of

cochains on X with coefficient R. whose cohomology we denote by H∗(X,R). This is

called the singular cohomology of space X with coefficient R.

Remark. There is actually the notion of chain complex (C•, ∂) with decreasing index, and

the “chain complex” we just stated should be more suitably referred to as “cochain complex”.

However, for the brevity and consistency we only emphasize the notion of cochain complex

and just call it chain complex, since converting between them is just a matter of flipping the

sign of the complex, i.e. Ck := C−k and ∂k := d−k.

The second one to introduce is de Rham cohomology, which a the cohomology theory

that gives a series of R-modules (real vector spaces) for a given smooth manifold. In this

paper, when we talk about smooth manifolds, we are referring to the topological manifold

equipped with a smooth atlas, with two additional requirements:

1. it should be Hausdorff;

2. it should be second countable.

It turns out that with these notions, we will be able to construct a partition of unity for any

given open cover, which gives certain “softness” to functions (and forms) on the manifold.

This is an essential ingredient for section 3 that will come later.

In some sense, the biggest tool provided by smooth manifold is the ability to consider

differential, i.e. to consider tangent space, and such notion can be endured with some al-

gebraic structure to capture some local geometric information, which leads to the notion of

differential form.
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Definition 4. Let M be a smooth manifold. We use T ∗
pM to denote the cotangent space of

M at point p. Consider the exterior algebra Λk(T ∗
pM) defined on the vector space T ∗

pM . We

can put them together fiber-by-fiber:

ΛkT ∗M :=
∐

p∈M

ΛkT ∗
pM

and give it appropriate smooth structure to let it become a bundle on M . A differential k-

form onM is defined to a section of this bundle. The set of k-forms naturally form aR-linear

space, which we denote by Ωk(M).

Our goal is to make Ω∗(M) into a chain complex (Ω•, d), so we need a reasonably

interesting d, defined as follows:

Definition 5. For ω ∈ Ωk(M), we define the exterior differentiation dω ∈ Ωk+1(M) of form

ω on local charts. First we can see thatΩk(Rn) has a natural basis {dxi1∧· · ·∧dxik |i1 < · · · <

ik}. Using this, ω has a local coordinate Representation of
∑

i1,...,ik
fi1,...,ikdxi1 ∧ · · · ∧ dxik

for smooth functions fi1,...,ik . Define dω locally to be

dω =
∑

i1,...,ik

∑

j

∂f

∂xj
dxj ∧ (dxi1 ∧ · · · ∧ dxik)

Through a simple calculation, we can see that d2 = 0, making (Ω•(M), d) a chain

complex. Therefore we have the definition:

Definition 6. De Rham cohomology is the cohomology of the complex (Ω•(M), d•). We

denote it by H∗
DR(M).

With this definition, we now prove the de Rham theorem, which gives the equivalence

between de Rham cohomology and singular cohomology on a smooth manifold, which in

some sense serves as a bridge between the beautiful world of smooth manifold and wild

landscape of general topological spaces. This proof is based on the one given in chapter 18

of[1].
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2.2 Smooth approximation of singular homology

The idea of this proof is to consider the natural paring (−,−) : Hk(M ;R)⊗Hk
DR(M ;R)→

R defined by

(σ,ϕ) :=

∫

∆k

σ∗(ϕ),

where∆k is our notation for standard k-simplex. It induces a homomorphismHk
DR(M ;R)→

Hk(M ;R) and we prove that it is an isomorphism. A technical problem is that this paring

is only well defined for singular chains that happens to be smooth (because only smooth

maps have the notion of pullback), but this can be fixed by approximation. Consider the

following variant of singular homology: we call a simplex σ : ∆k → M to be smooth iff

for any point x ∈ ∆k, there exists a neighborhood of x in Rk+1 (here we embed ∆n into

a Euclidean space) on which σ has smooth extension. Let C∞
• (M ;R) be the sub-complex

of the original singular complex C•(M ;R) generated by smooth singular simplexes. Since

boundary map only involves restricting simplexes to a closed subset, and since smoothness

is defined locally, we can see that boundary map respects smoothness. This allows us to

define H∞
∗ (M ;R) to be the homology of (C∞

• (M ;R), ∂). Let i : C∞
• (M ;R) → C•(M ;R)

be the inclusion map. It is easy to see that i is a chain map, so it induces a homology-level

map i∗ : H∞
k (M)→ Hk(M).

One benefit of considering “smooth stuff” is that smoothmaps have enough flexibility to

do approximations while having limited pathology. Tomake it precise, we state the following

statement without proving, which is taken from[1]:

Theorem 1 (Whitney Approxibation Theorem for Functions). SupposeN is a smooth mani-

fold with or without boundary,M is a smooth manifold (without boundary), andF : N →M

is a continuous map. Then F is homotopic to a smooth map. If F is already smooth on a

closed subset A ⊂ N , then the homotopy can be taken to be relative to A.

Such theorem remind us of an approach to relate singular homology and its smooth

variant, that is, we claim that any singular simplex can be approximated by a smooth simplex

from the same homology class:
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Theorem 2 (Smooth Approximation of Singular Homology). The homomorphism induced

by inclusion i∗ : H∞
k (M ;R)→ Hk(M ;R) is an isomorphism for any k.

To do this we need to subdivide the homotopy given by Whitney’s approximation the-

orem into boundaries?

2.3 The de Rham theorem

For homology simplex σ ∈ C∞
k (M ;R) and differential form ϕ ∈ Ωk(M), we define

∫
σ ϕ :=

∫
∆k σ∗(ϕ) extend it bi-linearly to chains and cochains. As mentioned before, we

describe a homomorphism induced by the “integration paring”: for [σ] ∈ Hk(M ;R) and

[ϕ] ∈ Hk
DR(M), define F : Hk

DR(M)→ Hk(M ;R) by letting

F ([ϕ])([σ]) :=

∫

∆k

σ̃∗(ϕ), (1)

where σ̃ is the smooth approximation of σ mentioned before. To check that this map is

well-defined, we need the following re-packaged form of Stokes’s theorem:

Theorem 3 (Stokes). For σ ∈ Ck+1(M ;R) and ϕ ∈ Ωk(M),

∫

∂σ

ϕ =

∫

σ

dϕ.

Proof of this theorem is omitted for being just simply unpacking and repacking defini-

tions. With this result, we have

∫

σ

dϕ =

∫

∂σ

ϕ = 0 (2)

for cycle σ and coboundary dϕ, and

∫

∂σ

ϕ =

∫

σ

dϕ = 0 (3)

for boundary σ and cocycle ϕ. Moreover, by theorem 2, the choice of σ̃ is unique up to a

boundary. Therefore the homomorphism F is well-defined. We call it the de Rham homo-

morphism.
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For simplicity, we say that a smooth manifoldM is de Rham if the de Rham map for it

is an isomorphism on every level of cohomology groups. Then we can state our target briefly

as

Theorem 4. (de Rham) Every smooth manifold is de Rham.

The most naïve case is that any convex open subsets of Rn is de Rham.

Lemma 1. (de Rham Theorem, Baby ver.) If U ⊂ Rn is a convex set, then U is de Rham.

Proof. By Poincaré lemma (theorem 11.49 in[1]), Hk
DR(U) = R when k = 0 and vanishes

otherwise. Andwe have the same result for singular cohomology sinceU is contractible. F is

trivially isomorphic for k '= 0 since both groups are trivial. For k = 0, F maps the generator

1 ∈ H0
DR(M) to σ (→

∫
σ̃ 1, which is clearly not trivial. Since F is an endomorphism of R as

R-module, being nontrivial implies that F is isomorphic.

In fact, The general idea of manifolds is to record global geometric data and keep local

data as trivial as possible. Our proof for de Rham theorem also follows the same “local-to-

global” pattern. The tool we use to do the patching is the Mayer-Vietoris sequence. To make

this work, we should first show that the de Rham map commutes with each horizontal map

of the Mayer-Vietoris sequence:

Lemma 2. Let F be the de Rham map. Then

1. for any smooth map f : M → N , the following diagram commutes:

Hk
DR(N) Hk(N ;R)

Hk
DR(M) Hk(M ;R)

F

f∗ f∗

F

2. if manifold M can be decomposed into union of open subsets U and V , then

Hk−1
DR (U ∩ V ) Hk−1(U ∩ V ;R)

Hk
DR(M) Hk(M ;R)

F

d d

F
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where the vertical maps are the differential maps in de Rham version and singular

version of the Mayer-Vietoris sequence.

Proof. The proof is done by simply chasing diagrams. For the first claim, pick ψ ∈ Hk
DR(N)

and σ ∈ Hk(M), then f ∗(F (ψ))(σ) = f ∗(
∫
σ f

∗(ψ)) =
∫
∆n σ∗(f ∗(ψ)) =

∫
f∗(σ) ψ =

F (f ∗(ψ))(σ). For the second claim, again, pick ψ ∈ Hk−1
DR (U ∩ V ) and σ ∈ Hk(M),

using theorem 3, there is d(F (ψ))(σ) = F (ψ)(∂σ) =
∫
∂σ ψ =

∫
σ dψ = F (d(ψ)).

Now we can start proving de Rham theorem. This can be done by proving the following

statements in sequence.

Lemma 3. We have the following statement:

1. Disjoint union of countably many de Rham manifolds is also de Rham.

2. Convex open subset of Rn is de Rham.

3. If a manifold has a finite de Rham cover, then it is de Rham. Here de Rham cover is

defined to be an open cover where every element and every finite intersection is de

Rham.

4. If a manifold has a de Rham basis, then it is de Rham. Here de Rham basis is defined

to be a basis that happens to be a de Rham cover.

Proof. 1. Let M =
∐

i Mi, and ιi : Mi →
∐

i Mi be inclusion maps. These maps

induces isomorphism between cohomology of disjoint union of spaces and product of

cohomology of each space. By part 1 of lemma 2, F commutes with each ιi, therefore

the following diagram commutes:

Hk
DR(

∐
Mi)

∏
i H

k
DR(Mi)

Hk(
∐

Mi)
∏

i H
k(Mi)

F

∼=

∏
F

∼=

and this implies thatM is de Rham.
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2. This is Lemma 1.

3. In this part we use Mayer-Vietoris sequence to do the actual patching work. Suppose

M admits a finite de Rham cover consisting of k open sets. If k = 1,M is trivially de

Rham. Now inductively supposeM is de Rham whenever it is covered by a de Rham

cover of size k. Then if M is covered by the de Rham cover M = U1 ∪ · · · ∪Mk+1,

let A := U1 ∪ · · · ∪ Uk and B := Uk+1, we have the following:

Hn
DR(A)⊕Hn

DR(B) Hn
DR(A ∩B) Hn

DR(M) Hn+1
DR (A)⊕Hn+1

DR (B) Hn+1
DR (A ∩B)

Hn(A)⊕Hn(B) Hn(A ∩B) Hn(M) Hn+1(A)⊕Hn+1(B) Hn+1(A ∩B)

F⊕F F F F⊕F F

By assumption A is de Rham since it is the union of k de Rham sets, and B is clearly

also de Rham. Notice that A ∩ B =
⋃

i(Ui ∩ Uk+1) is also union of k de Rham sets,

thus also de Rham. Therefore the first, second, fourth and fifth vertical maps are all

isomorphisms. By five lemma, the middle vertical map is isomorphism, whish shows

thatM is de Rham.

4. Claim 3 only works for finite situations, which is not enough. In this part we extend

the result to infinite case, which utilizes heavily the technical assumption on smooth

manifolds that requires them to be paracompact. Let {Uα} be a de Rham basis of M .

By proposition 2.28 of[1], we have a smooth exhaustion function f : M → R. Then

for any integer m, define Am := {q ∈ M |m ≤ f(q) ≤ m + 1} and A′
m := {q ∈

M |m− 1
2 < f(q) < m + 3

2}. Since A
′
m is open, we can cover its subset Am by basis

elements insideA′
m. SinceAm is compact, it can be covered by a finite cover, which is

still inside A′
m. We call the union of this finite cover Bm. Then Bm is de Rham since

it admits a finite de Rham cover. Since each Bm is “protected” by A′
m ⊃ Bm, we can

observe that if m is odd, each Bm are disjoint from each other for distinct m. This is

also true ifm is even. Therefore the two union

U :=
⋃

m:odd

Bm and V :=
⋃

m:even

Bm

9



are both disjoint union of countably many de Rham sets, therefore both de Rham by

part 1. Moreover, since U ∩V is a disjoint union ofBm∩Bm+1 form varies across all

integers, it is de Rham since it is also a union of countably many de Rham sets. Now

we can conclude thatM is de Rham by part 3.

5. Since Rn admit a basis consisting of open balls, and each open ball and finite inter-

section of union balls are all convex, we can see that it is a de Rham basis. Any open

subset of Rn inherits this de Rham basis, therefore becoming de Rham.

Using these results we can finally conclude the proof of theorem 4. Indeed, every man-

ifold admits a basis consisting of all coordinate charts, each of them being diffeomorphic to

an open set in Rn. Such de Rham-ness can be transferred from such Euclidean open subsets

to the basis elements since de Rhammap commutes with smooth maps (lemma 2). Therefore

every manifold is de Rham since they admit de Rham basis.

Such “local-to-global patching” is extremely cumbersome and require a lot of book-

keeping. One common practice is to develop somemachinery to keep this datawell-organized,

and this is accomplished by the introduction of sheaf and sheaf cohomology. We will use

them to re-formulate this proof in section 4.

3. Čech Cohomology
Čech cohomology is a cohomology theory that takes a presheaf on a topological space as

input. So it is not surprising that it occupies the term sheaf cohomology until Grothendieck’s

notion of derived-functor-based sheaf cohomology took its place. However, Čech cohomol-

ogy is still useful since it gives a practical way to compute sheaf cohomology, thanks to

theorem 12 coming later.

In this section we first introduce the notion of Čech cohomology, and prove its equiva-

lence to de Rham cohomology in the case of a smooth manifold. The approach used by this

chapter is mostly based on[2].
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3.1 Preliminary

Recall the Mayer-Vietoris sequence on smooth manifolds involves a cover of two open

sets of a smooth manifold M , and such sequence is exact mainly thanks to the existence of

partition of unity. That is, the functions on M is “soft” in some sense. In a more general

setting, if we have a cover of countably many open sets, we can generalize the sequence to a

double complex, namely the (p, q)-th componentKp,q should be the group of q-th differential

forms on p-fold intersections of open sets in the cover. So first we introduce some tools to

handle double complexes.

3.1.1 Some homological algebra for double complexes

Definition 7. A double complex of R-modules is a family of R-modules Kp,q indexed by

two coordinates, together with connecting homomorphisms dp,q : Kp,q → Kp,q+1 and δp,q :

Kp,q → Kp+1,q such that d2 = 0, δ2 = 0, and they satisfy the anti-commutativity

dδ + δd = 0.

It can be viewed as a single complexK• by letting its i-th stage to be

Ki :=
⊕

p+q=i

Kp,q

together with the connecting homomorphism D := (−1)pd + δ. The restrictions imposed

on d and δ, together with the anti-commutativity, implies that D2 = 0, so K• is indeed a

complex. We denote the cohomology of this complex by H∗
D(E

•,•).

We have the following result which is the proposition 3.11 on[3], whose proof is just

diagram chasing:

Proposition 1. If all rows of Ep,q are exact except the bottom row Ep,0, then H∗
D(E

•,•) ∼=

H∗(E•,0). Symmetrically, if all columns are exact except the left-most column E0,q. then

H∗
D(E

•,•) ∼= H∗(E0,•).
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For the purpose of this paper, an augmented version of this two proposition is also

available, which can be obtained by simply shifting both of the indices ofKp,q.

Proposition 2. We augment Ep,q with r : E−1,q → E0,q and i : Ep,−1 → Ep,0 to get the

following augmented double complex:

· · · · · · · · · · · ·

E−1,2 E0,2 E1,2 E2,2 · · ·

E−1,1 E0,1 E1,1 E2,1 · · ·

E−1,0 E0,0 E1,0 E2,0 · · ·

E0,−1 E1,−1 E2,−1 · · ·

Then if all rows of Ep,q are exact (except the augmented row Ep,−1), then H∗
D(E

•,•) is iso-

morphic to the cohomology of the augmented row H∗(Ep,−1) through map r; and again

symmetrically, if all columns of Ep,q are exact (except the augmented column E−1,q), then

H∗
D(E

•,•) is isomorphic to the cohomology of the augmented column H∗(E−1,q) through

map i.

3.1.2 Presheaves and sheaves

A presheaf is just a contravariant functor. More precisely, in this paper we use a notion

of a presheaf of abelian groups on topological space X to be a functor from the category of

open subsets of X to the category of abelian groups, and we simply call it a presheaf. Mor-

phisms between presheaves are just natural transformations between such type of functors.

Moreover, there is a full subcategory of presheaves, defined by imposing additional axioms:

Definition 8. A presheaf F is a sheaf if the following is satisfied:

1. (Glueing axiom) For any open cover
⋃

α Uα of a randomly chosen open set U , if for

each Uα we have a section fα ∈ F(U), such that fα|Uα∩Uβ
= fβ|Uα∩Uβ

for any α
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and β, then there exist a “glueing” of these fα, namely a section f ∈ F(U) such that

f |Uα = fα;

2. (Separation axiom) given the same setup for the open set U and its open cover {Uα},

if two sections f, g ∈ F(U) agrees when restricted to each Uα, then f = g.

Moreover, (pre)sheaves has the notion of stalks, which is not used until section 4 but

we put it here to avoid scattering a single topic throughout the paper.

Definition 9. For point x ∈ X and sheaf F on X , define the stalk of F at x to be

Fx := lim−→
U

F (U)

where U varies through all open set containing x.

Although working with sheaves on the level of sections (i.e. working with s ∈ F (U))

comes handy in some cases, the nature of sheaves is better described on the level of stalks.

For example, it would be much more natural to define image, kernel, etc on the level of

stalks, while more technical steps are required on the level of sections. Due to this reason,

the early definition of sheaves are done by explicitly placing stalks in a fiber-bundle-like

fashion, called étalé space. We will not touch this topic in this paper.

Example. Let M be a smooth manifold. Define R to be the following presheaf: for each

open setU ⊂M , letR to be theR-module of all locally constant functions fromU toR. This

is a sheaf since firstly the identity axiom is clearly satisfied since we are only dealing with

functions and restriction of functions, and secondly if a bunch of locally constant function

agrees on intersections of their domains, then the glued function will still be locally constant.

Such kind of construction is called a constant sheaf, which is one way of bring an ordinary

object (sets, groups, rings, modules, etc) into a sheaf-theoretical setting. We will see this

construction again later.

Example. Differential forms on smooth manifold M also form a sheaf, in the following

since: each open set U ⊂ M is itself a smooth manifold (with obvious smooth structure),

13



called a open submanifold of M . Then we have a presheaf Ωp(−) over space M defined

by U (→ Ωp(U). Moreover, glueing and separation axioms are automatically satisfied since

differential forms are just a bunch of smooth maps, and since smoothness is a local property.

3.2 Čech–de Rham complex

In this section we extend Mayer-Vietoris sequence to the case of a cover of countably

many open sets. Given an open cover U of smooth manifold M of countably many sets,

define a double complex

Cp(U ;Ωq) :=
∏

α0<···<αp

Ωp(Uα0...αp)

where we use the notation Uα0...αp :=
⋂

i Uαi . We extend the indices of tuple ω ∈ Cp(U ;Ωq)

to any arrangement of α0, . . . ,αp by defining ω...αi...αj ... = −ω...αj ...αi.... The “upward” dif-

ferential d : Cp(U ,Ωq)→ Cp(U ,Ωq+1) is induced by the exterior differential, and the “right-

ward” differential δ : Cp(U ,Ωq)→ Cp+1(U ,Ωq) is defined by mapping a tuple ω to the tuple

(α0, . . . ,αp+1) (→
p+1∑

i=0

(−1)iωα0...α̂i...αp+1

where the restriction is understood. We can check immediately d2 = δ2 = 0 and dδ+δd = 0,

so Cp(U ,Ωq) is a double complex. We can augment this complex by adding a left-most

column Ωq(M) together with restriction map r : Ωq(M) → C0(U ,Ωq) and by adding a

bottom row consisting of kernels of maps Cp(U ;Ω0)→ Cp(U ;Ω1) equipped with the same

differential map δ. The augmented bottom row is denoted by C•(U ;R) for some reason that

we will explain later. We call it Čech-de Rham complex.

Similar to the case of Mayer-Vietoris sequence, the existence of partition of unity on a

smooth manifold makes sure that the rows of the double complex are exact:

Proposition 3. For any q ≥ 0, the sequence

0 Ωq(M)
∏

Ωq(Uα0)
∏

Ωq(Uα0α1) . . .

14



is exact.

Proof. Firstly, the sequence is exact at Ωq(M) since we noticed before Ωq(−) is a sheaf and

then it is obvious from identity axiom of sheaves. Next, suppose ω ∈
∏

Ωq(Uα0...αp) is a

closed q-chain, i.e. δω = 0. Then we have

0 = (δω)α0...αp+1 = ωα1...αp+1 +
p+1∑

i=1

(−1)iωα0...α̂iαp+1 .

If we rename the indices, we can re-write this equation as

ωβ0...βp =
p∑

i=0

(−1)iωαβ0...β̂i...βp

Inspired by this equation, we pick a partition of unity {ρα} subordinate to the open cover

{Uα}, and define a (q − 1)-chain τ to be

τγ0...γp−1 :=
∑

α

ραωαγ0...γp−1 ,

and then we have

(δτ)β0...βp =
p∑

i=0

(−1)iτβ0...β̂i...βp
=

∑

α

ρα

p∑

i=0

(−1)iωαβ0...β̂i...βp
=

∑

α

ραωβ0...βp = ωβ0...βp

so we conclude that δτ = ω. This finishes the proof.

Given this result, using proposition 2, we know that Hq
DR(M) ∼= Hq

D(C
•(U ;Ω•)).

The columns of the double complex (without the augmented column) is not necessarily

exact. In fact, the failure of exactness is measured by the cohomology groups
∏

Hq(Uα0...αp).

If we restrict the cover U to be a good cover, i.e. all sets and all finite finite intersections of

the sets in the cover are contractible, then we have the exactness of the columns. Then we

get the result:

Theorem 5. If U is a good cover of smooth manifoldM , thenH∗
DR(M) ∼= H∗

D(C
•(U ;Ω•)) ∼=

H∗(C•(U ;R)).
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3.3 Definition of Čech cohomology

Now we define the notion of Čech cohomology. Our end product is a cohomology

theory H∗(M ;F ) that takes a smooth manifold and presheaf, which is called the Čech co-

homology ofM with values in F . Fix a smooth manifoldM , and let U = {Uα}α be an open

cover. Consider a chain Ck(U ;F ) :=
∏

F (Uα0...αk
) with differential map δ defined by

(δω)α0...αk+1
=

k+1∑

i=0

(−1)iωα0...α̂i...αk+1

where δ2 = 0 can be checked similarly as before, making it a chain complex, thus giving a

cohomology H∗(C•(U ;F )). We define Čech cohomology to be the colimit

Ȟ∗(M ;F ) := lim−→
U

H∗(C•(U ;F ))

where the underlying directed system consists of all open covers of M , with U < V if V is

a refinement of U .

Example. We used the notation C•(U ;R) to denote the augmented bottom row in the C̆ech-

de Rham complex defined to be the kernel of the map d : Cp(U ;Ω0) → Cp(U ;Ω1). This

notation makes sense since we can see that such kernel consists of exactly tuples of locally

constant functions on Uα0...αp .

We take the following proposition from[2] without proving:

Proposition 4. The good covers are cofinal in the set of all covers of a manifoldM . In other

words, any open cover ofM has a refinement being a good cover.

The colimit of a directed system can be replaced by the colimit of a cofinal subsystem.

By Theorem 5, we know thatH∗(C•(U ;R)) is constantly isomorphic toH∗
DR(M) whenever

U is a good cover. Therefore we have the following, which is the main result of this section:

Theorem 6. For a smooth manifold M ,

H∗
DR(M) ∼= Ȟ∗(M ;R).
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Such isomorphism should not be surprising, since in this case, Čech cohomology ex-

tracts combinatorical data from the arrangement of open covering with limited complexity

locally (i.e. being a good cover) to give a cohomological description of the topological struc-

ture of given manifold. This still follows the “trivial locally and patch to global” principal

mentioned before. Moreover, Čech cohomology somehow gives a solid way to compute

sheaf cohomology, which will be introduced in the next section.

4. Sheaf cohomology and reformulations of classical cohomology
theories
In some sense, the geometric information of certain space and the sheaf allowable on it

will influence each other. Sheaf cohomology, which is the topic in this section, is a cohomol-

ogy theory that extract information from both a given space and a given sheaf on top of that

space. After introducing the machinery of sheaf cohomology, we first demonstrate that if we

consider sheaf cohomology of the “sheaf containing least information”, that is, the constant

sheaf, then sheaf cohomology will degenerate into these “classical” cohomology theories in-

troduced before. In the end of this section, we give an example of a complex manifold, which

shows the phenomenon of underlying space influencing the structure of sheaves. Hence we

demonstrate the modern viewpoint toward geometry: the geometrical data of certain space

is determined by its structural sheaf.

4.1 Abelian categories and derived functors

In some sense, sheaves of abelian groups acts just like modules, and it is reasonable to

consider extending the beautiful theory of homological algebra of modules, whose founda-

tion is laid by Cartan and Eilenberg[4] to the category of sheaves. This idea is systematically

explained in Grothendieck’s famous Tohoku paper[5], which introduces the notion of abelian

category to put both category of modules and sheaves into a same framework. This approach

is much more general beyond its original goal since it is about extracting certain information

from a functor with minimal abelian enrichment structure, not related with any particular

geometric or algebraic context. This makes such approach extremely elegant and powerful,
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and at the same time, having a lot more technical issue. Therefore the purpose of this paper,

we are going to slightly touch this topic and use it as a tool, omitting most of the proof.

The following is mainly based on[6].

Definition 10. A category C is called an pre-abelian category if the following are satisfied

1. C has an object that is initial and final at the same time, called a zero object 0 ∈ C;

2. The product A× B for every pair of object A,B ∈ C exists;

3. Each hom-set HomC(A,B) := MorC(A,B) has a abelian group structure.

A functor between additive categories preserving abelian group structure of hom-sets is

called a additive functor.

In such category, we have the notion of kernel and cokernel defined using equalizers

and coequalizers. For some morphism f ∈ Hom(A,B), the kernel is an object kerf together

with a morphism kerf → A that is final among all morphisms t : T → A satisfying f ◦t = 0.

In other words, kernel is characterized by the following universal property:

T

kerf

A B

0

0

f

Cokernel is just a dual definition, that is, defined by the following universal property:

T

cokerf

A B

0

0

f

If we impose an additional requirement, we get the following:

Definition 11. An abelian category is an additive category satisfying the following require-

ments:

18



1. Every morphism has kernel and cokernel;

2. every categorical monomorphism is the kernel of its cokernel;

3. every categorical epimorphism is the cokernel of its kernel.

The homological algebra ofmodules over a ring is always the canonicalmodel of abelian

category. Therefore we have the counterpart of injective module from module theory in a

general abelian category:

Definition 12. An object I in abelian category C is called injective if for any monomorphism

m : A → B, an morphism A → I can be lifted (not necessarily uniquely) to a morphism

B → I . That is, we have the diagram

X

I Y

m

Moreover, C is said to have enough injective if for any object A ∈ C, there exist an injective

object I together with a monomorphism A I . Given this requirement, it turns out

that thanks to the additional requirement of being an abelian category, for any A ∈ C, there

exists a long exact sequence

A I0 I1 I2 · · ·

which is called the injective resolution of A. (A proof of this can be found in lemma 2.3.6

of[6])

Using these terminology we can define the notion of derived functor to measure the

failure of exactness of an additive functor: (in our case, it is actually right derived functor)

Definition 13 (Derived functor). Let F : A → B be a covariant left exact additive functor.

Define a series of new functors RiF : A→ B as follows: for each object X ∈ A, consider a
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injective resolution of X:

X I0 I1 I2 · · ·

and then apply F it to get a chain complex with FX replaced with 0: (not necessarily exact

anymore):

0 FI0 FI1 FI2 · · ·

and we define RiF (X) := H i(FI•).

The whole point of introducing the heavy machinery of derived functor is concluded in

the following theorem, which we cite from[7] without proving:

Theorem 7. Let F : A → B be an left exact additive functor between abelian categories.

For an short exact sequence of objects in A,

0 X ′ X X ′′ 0

there is a long exact sequence

0 FX ′ FX FX ′′

R1F (X ′) R1F (X) R1F (X ′′)

R2F (X ′) R2F (X) R2F (X ′′) · · ·

That is, derived functor gives a way to “mend” the incomplete short exact sequence

produced by a functor that is only left exact by extending it into a long exact sequence, and

we can easily see that F becomes exact if and only if R1F (X ′) = 0.

By definition we can easily see that if an object I is already injective, then for any left

exact additive functor F , we have RkF (I) = 0 for all k ≥ 1. However, in general case, a

injective resolution is hard to obtain, making sheaf cohomology being nearly impossible to

be calculated by definition. Luckily, it turns out that there is a larger class of objects, larger

than the class of injective objects, that can replace injective objects in the resolution while
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produce the same sheaf cohomology.

Definition 14. Given additive left exact functor F : C → D, an object A ∈ C is said to be

an F -acyclic object if RkF (A) = 0 for all k ≥ 1. It is clear that injective objects are acyclic

with respect to all choices of F .

Theorem 8. Derived functors can be calculated using acyclic resolution. More precisely,

for some left exact additive functor F and an objectB, ifB ← A• is an F -acyclic resolution,

then RkF (B) ∼= Hk(F (A•)) for all k.

Proof. See theorem 4.1 of[8].

4.2 Sheaf cohomology

In this section, we apply the machinery of derived functor to the category of sheaves.

Before that, we need to demonstrate that this category is indeed an abelian category with

enough injectives.

We want the notion of kernel, image and quotient for sheaves, in order to treat it as

an abelian category. Given a presheaf F of R-modules, we can consider the closest sheaf

approximation, which is called the sheafification F sh of F :

Definition 15. The sheafification F sh of presheaf F is a sheaf (together with a morphism

F → F sh) such that for any sheaf G , we have the following diagram

F F sh

G

We may define the kernel, cokernel and image as straightforward as how we define

them in the category of abelian groups, but the resulting presheaf may not always be a sheaf.

But we can fix this by using sheafification to “force” the presheaf to be a sheaf. That is to

say,

Definition 16. Let f : F → G be a morphism of sheaves. Define the kernel ker(f) of f to
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be the sheafification of the presheaf U (→ ker(f(U)). Similarly, the cokernel and image of f

are defined to be the sheafification of U (→ coker(f(U)) and U (→ im(f(U)), respectively.

The essence of the notion of sheafification is the fact that sheafification preserves the

most important viewpoint of sheaves: the stalks.

Proposition 5. For any presheaf F ∈ Sh(X) and point x ∈ X , there is Fx = (F sh)x.

Theorem 9. The category Sh(X) of sheaves on space X is an abelian category.

Proof. Just check that cokernel of kernel and kernel of cokernel for sheaves coincide on the

level of stalks, on which the problem reduces to checking the same statement for modules.

Proposition 6. The category of sheaves of abelian groups has enough injectives.

Proof. See

Another notation for the sections F (U) of presheaf F over open set U is Γ(U,F ).

This notation comes handy if we let U to be the whole space X , and let the sheaf F vary

and consider the functor Γ(X,−), which is called the global section functor. This functor is

easily seen to be an additive functor. Moreover, we have the following property:

Proposition 7. The functor Γ(X,−) from the category of sheaves of abelian groups to the

category of abelian groups is left exact.

Proof. Consider the following exact sequence of sheaves:

0 F ′ F F ′′ 0
f g

Using the naturalality of colimit, we can form the following diagram

0 Γ(F ′) Γ(F ) Γ(F ′′)

0
∏

x∈X F ′
x

∏
x∈X Fx

∏
x∈X F ′′

x 0

f g

∏
f

∏
g
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where the vertical maps are injective by identity axiom of sheaves, and the lower row is exact

since taking stalks and product both preserves exactness. Our goal is to prove that the upper

row is exact. First it is clearly a chain complex. For s ∈ Γ(F ′) such that f(s) = 0, we have

(sx)x = 0 by exactness of the lower row, therefore s = 0. For t ∈ Γ(F ) such that g(t) = 0,

by commutativity we have g((tx)x) = 0, so there exist a family of stalks (sx)x such that

f(sx) = tx for all x. Since (tx)x comes from a global section t, it is compatible for gluing,

that is, if we let tα(x) ∈ F (Uα(x)) be the representative of tx, then for any x, y, there is

resUα(x),Uα(x)∩Uα(y)
(tα(x)) = resUα(y),Uα(x)∩Uα(y)

(tα(y))

since f(sx) = tx, this becomes

f(res(sα(x))) = res(f(sα(x))) = res(f(sα(y))) = f(res(sα(y)))

so we have res(sα(x)) = res(sα(y)), which is the gluing compatibility for sx. Therefore we

can glue them to s ∈ Γ(F ′), and we know that f(s) and t is mapped to the same thing in
∏

Fx, so f(s) = t. Then the proof is done.

Now we are allowed to consider the derived functors of Γ(X,−).

Definition 17 (sheaf cohomology). For a sheaf F on a space X , we define the k-th sheaf

cohomology of F , denoted by Hk(X,F ), to be RkΓ(X,−)(F ).

The notion of sheaf cohomology is a powerful tool: on the one hand, since algebraic

geometry also cares about sheaves and structural sheaves of certain spaces (that is, the notion

of schemes), we can use the sheaf cohomology to explain some theorems about structure of

structural sheaf on certain space, such as in the famous Riemann-Roch theorem; on the other

hand, the way we define sheaf cohomology using derived functor inspires a more general

method of giving a cohomology theory out of a left-exact additive functor to measure its

failure of exactness, whose application includes cohomology theories even in some seem-

ingly disparate fields, for example, the notion of group cohomology and algebraic K-theory.
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4.3 Equivalences between sheaf cohomology and other cohomology theories

Our first bounus of developing such a complicated machinery is its natrual equivalence

to de Rham cohomology.

Theorem 10. On a smooth manifold M , there is an isomorphism H∗
DR(M) ∼= H∗(M,R).

Proof. Previously we have mentioned in example 3.1.2 that for an smooth manifoldM , the

differential forms on open subsets ofM form a sheaf Ωk(−). Consider the chain complex

0 R Ω0(−) Ω1(−) Ω2(−) · · ·d d d d

It is clear that R is the kernel of the map Ω0(−)→ Ω1(−), so the sequence is exact at R. For

the rest of the sequence, we can check the exactness on stalk level. SinceM is locally home-

omorphic to Rn, a contractible space, and by Poincaré’s lemma, which is the theorem 11.49

in[1], we can see that locally a closed form is always exact. So the exactness of the rest of the

complex is proved. Moreover, Ωk(−) turns out to be a Γ(M,−)-cyclic for each k, whose

proof can be found in Theorem 10.22 of[9]. Therefore we have H∗(M,R) ∼= H∗(Ω•(M)),

where the latter cohomology coincide with the definition of de Rham cohomology. This

finishes the proof.

We can apply the same method to Similarly, for a smooth manifold M and ring R, we

can treat singular cochains as a presheaf by considering the contravariant functor Ck(−;R).

We take the sheafification of this presheaf and still use the same notation. According to pp.

42 of[10], we know that the complex

0 R C0(−;R) C1(−;R) C2(−;R) · · ·d d d d

is acyclic with respect to the global section functor. The exactness at each step of this chain

is again guaranteed by the local contractibility provided by M being a manifold. Now if

we use this resolution to calculate sheaf cohomology of M , what we get is H∗(C•(M ;R)),

which is exactly singular cohomology. So we have the theorem

24



Theorem 11. On a smooth manifold M , there is an isomorphism H∗(M ;R) ∼= H∗(M,R).

Moreover, this result can be generalized to any locally contractible space X .

The two above theorems gracefully completes the long and tedious proof of theorem 4

presented in section 2.3, demonstrating the power of this derived-functor-based sheaf coho-

mology.

However, as we mentioned before, the difficulty of calculating sheaf cohomology itself

by definition is an obstacle to putting this machinery into actual use. The follwoing theorem

solves this problem by stating that Čech cohomology is equivalent to sheaf cohomology,

where the former is much easier to calculate. This result is first given by Jean Leray.

Theorem 12. Sheaf cohomology and Čech cohomology coincide for any sheaf on a para-

compact and Hausdorff space.

Proof. See section II.5.10 of[11].

4.4 An example of sheaf cohomology measuring local-to-global obstacles

In this section we give an elementary example of using sheaf cohomology to detect “the

obstacle to local-to-global problem” mentioned as a slogan before. We fix the notation of

n-dimensional complex manifold to be a smooth manifold M with atlas being Cn, and with

transition maps being holomorpic. Consider the presheaf of all holomorphic functions OM

on M , defined by U (→ {f : U → C|f : holomorphic}, and it is immediately seen to be a

sheaf. It has a subsheafO∗
M ⊂ OM consisting of nowhere vanishing functions. Our example

start with the chain of sheaves

0 Z OM O∗
M 1

j exp

where j(n) := 2nπi and exp is defined by post-compose f : U → C with the complex

exponential ez. The exactness of the chain can be checked on the level of stalks.

Proposition 8. This is an exact sequence.
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Proof. First it is clear that j : Z → OM is the kernel of exp, so the exactness follows. For

the exactness at OM , pick a stalk sz at z ∈ M represented by section s : U → C that

is mapped to constant function 1 by exp. Since the pre-image of 1 of function ez is N :=

{2nπi|n ∈ Z}, we know that there exist some neighborhood U of z such that im(s|U) ⊂ N .

Since s is holomorphic, N is discrete andM is locally contractible (thus locally connected),

we can see that s is the constant function to 2kπi for some k when restricted in an even

smaller neighborhood of z, so sz = (2kπi)z ∈ Z. The exactness at O∗
M lays heavily on the

local nature of stalks: for any stalk s′z represented by s′ ∈ O∗
M(U), we have im(s′) ⊂ C∗.

Therefore we can find some small disk D that avoids 0 and pass to another representative

s′′ := s′|s′−1(D) which still represent the same germ. Since then we can safely choose a ray

l that avoids D and take the corresponding branch of complex logarithm, and we get the

desired preiamge in OM .

After applying the global section functor, according what we have done before, there is

a long exact sequence:

0 Γ(M,Z) Γ(M,OM) Γ(M,O∗
M)

H1(M,Z) H1(M,OM) H1(M,O∗
M) · · ·

j exp

As we can see, the global section of exp is surjective if and only if H1(M,Z) = 0, and this

is exactly the vanishing of first singular cohomology group, according to the result we have

proved. Under this guidance, we can easily cook up some example for failure of surjec-

tiveness of Γ(M, exp): the existence of “one-dimensional holes” on M , such as the case of

M := C∗, will make it impossible to choose a reasonable branch for complex logarithm for

some sections whose image goes arounds the origin, therefore ruin the surjectiveness. This

is also a strong example of the slogan of geometry: “the sheaf of functions on certain space

contains the same amount of data”, since here existence of certain holomorphic functions is

binded with topological data onM .

26



参考文献

[1] LEE JM. Introduction to smooth manifolds[M/OL]. Second edition. NewYork ; Lon-
don: Springer, 2013 [2023-05-03]. https://search.library.wisc.edu/catalog/991012709
8002121. 708 pp.

[2] BOTTR, TULW.Differential Forms inAlgebraic Topology[M/OL]. NewYork, NY:
Springer, 1982 [2022-12-08]. http://link.springer.com/10.1007/978-1-4757-3951-0.
DOI: 10.1007/978-1-4757-3951-0.

[3] OSBORNEMS. Basic Homological Algebra[M/OL]. NewYork, NY: Springer, 2000
[2022-12-31]. http://link.springer.com/10.1007/978-1-4612-1278-2. DOI: 10.1007/9
78-1-4612-1278-2.

[4] CARTAN H. Homological algebra[M/OL]. Princeton: Princeton University Press,
1956 [2023-05-03]. https : / / search . library .wisc . edu / catalog / 9910293668802121.
390 pp.

[5] GROTHENDIECK A. Some aspects of homological algebra[J].,

[6] WEIBELCA. An introduction to homological algebra[M/OL]. Cambridge [England]
; New York: Cambridge University Press, 1994 [2023-05-03]. https://search.library.w
isc.edu/catalog/999740893602121. 450 pp.

[7] VAKIL R. The Rising Sea: Foundations Of Algebraic Geometry[M/OL]. https://mat
h.stanford.edu/~vakil/216blog/.

[8] BREDON G E. Sheaf Theory[M/OL]. New York, NY: Springer, 1997 [2023-01-04].
http://link.springer.com/10.1007/978-1-4612-0647-7. DOI: 10.1007/978-1-4612-06
47-7.

[9] WEDHORN T A. Manifolds, Sheaves, and Cohomology[M/OL]. 1st ed. 2016. Wies-
baden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2016 [2023-
05-03]. https://search.library.wisc.edu/catalog/9912227474802121.

[10] GRIFFITHS P. Principles of algebraic geometry[M/OL]. Hoboken, N.J.: Wiley, 1994
[2023-04-30]. https://search.library.wisc.edu/catalog/9911067020902121.

[11] GODEMENT R. Topologie algébrique et théorie des faisceaux[M/OL]. [2. édition
revue et corrigée]. [Paris]: Hermann, [1973, c1964], 1973 [2023-05-03]. https://searc
h.library.wisc.edu/catalog/999682697702121. 283 pp.

27

https://search.library.wisc.edu/catalog/9910127098002121
https://search.library.wisc.edu/catalog/9910127098002121
http://link.springer.com/10.1007/978-1-4757-3951-0
https://doi.org/10.1007/978-1-4757-3951-0
http://link.springer.com/10.1007/978-1-4612-1278-2
https://doi.org/10.1007/978-1-4612-1278-2
https://doi.org/10.1007/978-1-4612-1278-2
https://search.library.wisc.edu/catalog/9910293668802121
https://search.library.wisc.edu/catalog/999740893602121
https://search.library.wisc.edu/catalog/999740893602121
https://math.stanford.edu/~vakil/216blog/
https://math.stanford.edu/~vakil/216blog/
http://link.springer.com/10.1007/978-1-4612-0647-7
https://doi.org/10.1007/978-1-4612-0647-7
https://doi.org/10.1007/978-1-4612-0647-7
https://search.library.wisc.edu/catalog/9912227474802121
https://search.library.wisc.edu/catalog/9911067020902121
https://search.library.wisc.edu/catalog/999682697702121
https://search.library.wisc.edu/catalog/999682697702121


致谢

感谢朱一飞和王博潼两位老师的在学术上和论文写作上的指导，以及梁桐桐和

李昀升两位学长在写作过程中给予的帮助和鼓励。

28


