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This paper gives a method to associate a spectra to a category with some additional struc-

ture. Since each spectra corresponds to a generalized cohomology theory, in this way we can
build a correspondence between these categories and generalized cohomology theories.

The approach used in this paper is generally based on the paper [4] by G. Segal, which
uses the construction of Γ-space as the bridge in between.

Aside from the original intention of Segal to apply this approach to K-theory, another
interesting point is that the requirements put on a special category called Γ to be introduced
later, that makes it a “storehouse” of what rules a binary operation should obey, actually
inspires many other versions of conditions which are put onto simplicial objects and some
more abstract constructions alike, summarized by later literature as Segal condition. In the
end of this paper, we present a presence of Segal condition under the modern topic of higher
categories.

For simplicity, we use the term space to indicate the smaller category of compactly gener-
ated topological spaces as stated in [2].

1 Preliminaries

1.1 Spectra and generalized cohomology theories

We have already seen that there is a natural link between “ordinary” cohomology groups
and homotopy groups, i.e. there is a natural isomorphism

Hn(−;G) ∼= ⟨−, K(G, n)⟩ (1)

between functors running through the homotopy category of CW complexes.
Although the Eilenberg–Steenrod axiom pins down the behavior of any “qualified” co-

homology theory, if we remove the dimension axiom, there will be a big family of different
theories, including some interesting ones like reduced cohomology. This class of cohomol-
ogy theories are called generalized cohomology theory. It turns out that each generalized co-
homology theory has its own version of the natural isomorphism as in Eq 1. In this case,
K(G, n) is replaced by some other sequence of spaces called spectrum.
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Definition 1. A (Ω-)spectrum is the following data:

1. a sequence of pointed spaces {En} for n ≥ 0;

2. base point preserving closed embedding En → ΩEn+1 for n ≥ 0.

These maps are called structural maps of the spectrum. We define the loop spectrum of a given
spectrum E to be a sequence of colimits

(ωE)k := lim
→

ΩnEn+k

(There are many versions of spectrum. In this paper, we use spectrum to indicate the more
classical version of Ω-spectrum.) The spectrum {K(G, n)} mentioned before is a special case
of (Ω)-spectrum called Eilenberg–Steenrod spectrum. This can be made precise by recalling
that K(G, n) = ΩK(G, n+ 1). which are its structural maps.

To complete the picture, we introduce the suitable category to talk about spectra. The
objects of this category are spectra, of course, and morphism between spectra defined as
follows:

Definition 2. A morphism from spectrum X to Y is a sequence of maps fk : Xk → (ωY )k
that makes the following diagram commute:

Xk (ωY )k

ΩXk+1 Ω(ωY )k+1

fk

Ωfk+1

This theorem makes solid that every generalized cohomology theory can be represented
by a spectrum.

Theorem 1 (Brown). A functor F from the pointed homotopy category of spaces to the category of
pointes sets is representable if and only if

1. it takes coproducts to products;

2. it takes weak pushouts to weak pullbacks.

In the case of CW complexes, the second required property in the theorem is equivalent
to: Pick a pair of CW pairs ((X,A1), (X,A2)) such that A1 ∪A2 = X and A1 ∩A2 is still a CW
complex. Then for all x1 ∈ F (A1), x2 ∈ F (A2) such that both of them restricts to the same
element of F (Y ∩Z), there exists some y ∈ F (X) such that y restricts to x1 and x2 on A1 and
A2 respectively.

As a result, given a cohomology theory

h∗ : CWop → Ab, (2)

we have spaces Ek such that
hk(X) ∼= [X,Ek]. (3)

There is a special kind of spectrum that plays a important role in the following sections:
sphere spectrum.

Definition 3. The sphere spectrum S is the suspension spectrum {S0,ΣS0 = S1,Σ2S0 =
S2, . . . }. This spectrum can also be made into an Ω-spectrum since Ω and Σ are adjoint
to each other.
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1.2 Classifying space of categories

When I first learned about category theory I wondered if I can treat a category as a “graph”
or something, and use the usual tool in graph theory or topology to study it. I gave up
immediately since I think a category is often too complicated in most cases to be studied in
this way. However, this actually turns out to be natural and useful in this field of study.

We associate a CW-complex to a category C by putting a 0-cell for each object in C, a 1-cell
for each morphism, a 2-cell for each commutative diagram in the shape of

X0 X2

X1

and so on.
To formalize this idea, we first recall something about simplicial set. For convenience we

define n := {1, 2, . . . , n} and [n] to be n ∪ {0} with additional natural order structure <.

Definition 4. A simplicial set is a contravariant functor A : Ordop → Sets, where Ord denotes
the category of finite totally ordered sets.

Such kind of construction can be understood intuitively by seeing the data of A as a se-
quence of sets A0, A1, A2, . . . (where Ai := [i]), which can be seen as collection of geometric
“parts” of different dimensions, and appropriate boundary maps and degeneracy maps that
encodes how these parts should be glued together. When these boundary maps and de-
generacy maps are consistent, we can use these recorded data as instructions to recover a
space:

Definition 5. The geometric realization |A| of simplicial space A = {An} is defined to be(∐
n≥0

∆n × An

)
/ ∼

where ∆n is the standard n simplex and

Definition 6. Let C be a category. We define the nerve NC of C to be a semi-simplicial set
defined by

NC(S) := Functors(S;C).

where Functors(S;C) denotes the set of functors from the “order category” of ordered set
S to category C. Next we define the classifying space of C to be the geometric realization of
semi-simplicial set NC and denote it by BC.

2 Γ-spaces

The motivation of a Γ-space is to somehow relax the associativity condition of a topolog-
ical abelian group. (Working directly with topological abelian group is somehow too “re-
stricted” since every topological abelian group is weakly homotopy equivalent to a prod-
uct of Eilenberg-MacLane spaces, which can be seen easily from the structural theorem of
abelian groups and the fact that homotopy group functors respects products.) As a exam-
ple, we can describe the usual associativity law of abelian groups in an “overkill” approach:
for abelian group A, let θ be a map that assigns a subset of {1, 2, . . . ,m} to a given number
i ∈ {1, 2, . . . , n}. Define θ∗ : An → Am by

θ∗(a1, . . . , an) := (b1, . . . , bm), where bi :=
∑
j∈θ(i)

aj
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These θ∗ forms a graph with vertices being An for different n (the case for a abelian group
with 3 elements is visualized below). Then the associativity is described by requiring this
graph to be commutative.

(a1, a2, a3)

(a1 + a2, a3) (a1, a2 + a3)

(a1 + a2 + a3)

Motivated by this example, we have the following definitions:

Definition 7. Define Γ to be the category that

1. its objects are all finite sets;

2. morphisms from finite set S to T are the maps θ : S → P(T ), (where P(T ) denotes
the power set of T ) such that θ(α) and θ(β) are disjoint for distinct α and β.

3. Define the composition of θ : S → P(T ) and ϕ : T → P(U) to be ψ : S → P(U),
where ψ(α) := ∪β∈θ(α)ϕ(β).

This Γ is the object that encodes all information about the composition law. Then if
we attach this Γ to a space, we have an actual space with some operation that obeys the
composition law recorded in Γ:

Definition 8. Define a Γ-space to be a contravariant functor A : Γop → Top such that

1. A(0) = A(∅) is contractible;

2. for any integer n, the map pn : A(n) → A(1)n defined by

pn = (A(i1), A(i2), . . . , A(in))

(where ik : 1 → n ∈ Mor(Γ) is defined by i(1) := {k}) is a homotopy equivalence.

We call A(1) to be the underlying space of Γ-space A. The good thing about this Γ is
that it acts like a “detachable module” and it turns out that we can attach it to something
else, for example a category, to apply the same composition law. This gives us the parallel
concept of a “Γ-category”, which turns out to be connected to the concept of Γ-space by
taking classifying space of categories, which we shall discuss in the next section.

Next we demonstrate how can we obtain a spectrum from a given Γ-space. We can see
that the Γ-space is a semi-simplicial space, and we can consider its geometric realization.
This enables the definition:

Definition 9. For Γ-space A, define its classifying space BA to be a Γ-space such that BA(S)
is the realization of the Γ-space T 7→ A(S × T ).

Since geometric realization respects homotopy equivalence and products, we can see that
BA satisfies the definition of a Γ-space, which makes this definition valid.

If we recursively apply the operation of finding the classifying space, we will get a spec-
trum A(1), BA(1), B2A(1), . . . . We denote it by BA.

In the rest of this section we discuss some nice properties of such construction. We can
use the information brought by Γ to turn A(1) into an H-space in the following way: con-
sider the composition

A(1)× A(1) A(2) A(1)
p−1
2 A(m2) (4)
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where p−1
2 is the homotopy inverse of p2 defined in the definition of Γ and m2 : 1 → 2 is a

morphism in Γ sending 1 to {1, 2}.

Proposition 1. Suppose A is a Γ-space and its underlying space A(1) is k-connected. Then
BA(1) is (k + 1)-connected. And A(1) = ΩBA(1) if and only if the H-space structure on
A(1) has homotopy inverse.

This proposition can be restated more generally by extracting the underlying simplicial
spaces:

Proposition 2. Suppose [n] 7→ An be a simplicial space such that

1. A0 is contractible;

2. pn : An → An
1 := (i∗1, i

∗
2, . . . , i

∗
n) is a homotopy equivalence, where ik : [1] → [n] sends 0

to k − 1 and 1 to k,

then

1. if A1 is k-connected, then |A| is (k + 1)-connected;

2. The adjunction pair A1 → Ω|A| and SA1 → |A| is a homotopy equivalence iff A1 has a
homotopy inverse.

Now we discuss the converse direction, i.e. how to get a Γ-space from a spectrum. It
turns out that this operation is adjoint with the operation B(−) of finding the classifying
space.

Definition 10. Let X be a spectrum. Define the Γ-space AX corresponding to X to be n 7→
(AX)(n) := Mor(Sn;X), where S is the sphere spectrum defined previously.

To qualify AX as a Γ-space, we only need to check that pn : AX(n) → AX(1)n. This can
be done by noticing the equivalence

(AX)(n) = Mor(Sn;X) ≃ Mor(∨n
i=1S;X) = (Mor(S;X))n = ((AX)(1))n

3 Γ-Categories

The final piece of puzzle of the grand “Spectra–Γ-space–Category” correspondence is so
called Γ-category. It is the natural counterpart of Γ-space introduced before.

Definition 11. Define a Γ-Category to be a contravariant functor C from Γ to Cats such that

1. C (0) is equivalent to the “singleton category” with one object and one morphism;

2. for each n ≥ 0, the functor pn : C (n) → (C (1))n defined by pn = (C (i1), . . . ,C (in)) (ik
is defined before in the definition of Γ-spaces) is equivalence of categories.

Immediately after this definition, we can see that if C is a Γ-category, the functor |C |
defined by S 7→ |C (S)| is a Γ-space.

We can construct a Γ-category from a category C where sum always exists. Suppose S
is a finite set and P(S) is the power set of S made into a category by regarding morphisms
to be the inclusion betwenn subsets. Define C(S) to be a category where objects are func-
tors from P(S) to C that sends disjoint union to the sum in C, and morphisms are natural
isomorphisms between functors. We can see that the C(−) we just construct is a contravari-
ant functor from Γ to the category of categories. It is a Γ-category since C(2) → C × C is a
equivalence of categories, and we can extend this to the case for n by inductively unfold the
statement.
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Example. Start with the category Fin with disjoint union. Then |Fin(1)| =
∐

n≥0BSn where
Sn is symmetric group. If we choose the underlying category to be the category of finite-
dimensional real vector spaces and use the sum ⊕, then A(1 =

∐
n≥0B(GL(n,R)). As we

can see, the changing part is always the “symmetric group” of the corresponding category.

Now we have completed our landscape:

{Spectra}

{Γ-spaces}

{Γ-categories}

A(−)B(−)

|−|

4 Segal Condition in Higher Categories

Apart from the case for Γ-space and Γ-category, the idea of using certain “object” under the
restrictions we stated repeatedly in definition 8 and 11 to record the “compositing behavior”
of a binary operation turns out to be pretty universal. In later literature, this idea is summa-
rized as so called Segal condition. We present a appearance of this idea in the modern setting
of higher categories, controlling the composition law of paring operation for a monoidal
category.

Definition 12. A monoidal category M is a category equipped with a monoidal paring ⊗ :
M × M → M and a monoidal unit S ∈ M, satisfying proper associativity, left and right
unitality in terms of natural isomorphisms.

Let M be a monoidal category. A new category M⊗ can be constructed as:

1. objects are finite sequence (M1,M2, . . . ,Mn) of objects in M;

2. morhpisms from (M1, . . . ,Mn) to (L1, . . . , Lk) is a pair (α, {fi}i) where α is a map from
[k] to [n], and fi :Mα(i−1)+1 ⊗ · · · ⊗Mα(i) → Li for i = 1, . . . , k.

Let p : C → D be a functor and d ∈ D. Then we can define the the fiber Cd of p over d by
the pullback diagram

Cd C

[0] D

p

Constd

It turns out that if p satisfy some technical condition (being a Grothendieck opfibration),
then we can lift a morphism α : d1 → d2 ∈ Mor(D) to a morphism α! : Cd1 → Cd2 between
fibers.

The projection functor p : M⊗ → ∆op defined by sending (M1, . . . ,Mn) to [n] and sending
(α, {fi}i) to α is one of such morphism. Define Segal maps to be

σ : M⊗
[n] → Mn := ((ι1)!, . . . , (ιn)!) (5)

where ιi : [n] → [1] ∈ ∆op is the opposite morphism of 0 7→ i− 1, 1 7→ i.
It turns out that these Segal maps are equivalences, and this property is called Segal

condition. We can see that it is exactly the same thing as we used in definition 8 and 11.
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